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PARAMETRIC METHOD OF SOLVING A NONLINEAR
HEAT-CONDUCTION PROBLEM FOR A
SEMIINFINITE BODY

V. A, Volkov and E. M. Smirnov UDC 536,21

A new method is proposed for solving heat-conduction problems with nonlinear boundary condi-
tions.

A very essential shortcoming of the well-known integral methods for solving nonlinear heat-conduction
problems [1] is the a priori choice of the family of temperature profiles or of heat-flux density. The degree
of approximation of the adopted distribution of the sought values to the true one and thus the error of the meth-
od depends one one's intuition; as a rule, they are only satisfactory in a finite range of the values of the param
eter,

Up to the mid-1960's a similar situation could be observed as regards the related problem of evaluating
the laminar boundary layer when the multiparameter method developed by Loitsyanskii [2] was published, show-
ing the way for obtaining the families of the velocity profiles in the boundary-layer section in a rational man-
ner. It was based on solving the boundary-layer differential equation in new dimensionless parameters (the
similarity parameters), thus ensuring good accuracy of the obtained results when analyzing specific problems.

In this article an attempt is made to generalize the concepts of the Loitsyanskii method to the nonlinear
problems of heat conduction.

We now consider a heat-conduction problem for a semiin finite body with constantthermal characteristics,
which can be formulated as follows:

oT (x, 1) _ a T (x, 7) @
ixd axr
aT
—A—— =Q (T T, ©) fa x=0,
ox Q( P N ; (2)
oT =0, T=T, a x— o0
dx
T = TO (x) for ©=0. 3)

In this form, the problem (1)-(3) is referred to according to the classification of [1] as a nonlinear prob-
lem of the second kind, where the nonlinearity appears only in the boundary conditions (2).

Instead of the variable T(x, T), the variable q(x, T) is introduced by means of the relation

aT (x, 1) “)

1) = —A
g (%, 7) FPE

M. I. Kalinin Polytechnic Institute, Leningrad. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35,
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and then the dimensionless variable
9 (x, =g (x, DQ(Tp, Ts, 7). (5)
Then the problem (1)-(3) can be rewritten as

o 4Q % _, %0 ©
Q dv = oxz

=1 for x=0, 7

=0 as x— o0

A 0T, ‘
= e— a— = X for T = 0. (8)
¢ Q o 9o (%)
The thickness of the "filling-up"

& (1) = @ (x, 7)dx (9)

0

is adopted as a measure of performance, characterizing at every time instant the size of the region of tem-
perature variation; the following dimensionless coordinate is introduced:

n(x, 1) = x/6* (7). (10)

By making use of the relations

& dvr oy’

- - ot

® 1 @ d a n d&* 9
oz 5 Az’ At

where 3/97 denotes the explicit partial differentiation only, and employing (6), one obtains

Ty 1 99 99 (11)
L F—— —fp=2
T2 | o fo 3

The following notation has been introduced:

F (7) = dz/dx, . (12)
z (1) = 8*/a, (13)
_ .z
fi ()= 0 & (14)

The quantity f; () may be regarded as the first term of the parameter series which can be evaluated by
using the general formula, )
¢ dRQ

= 2

(15)
By differentiating (15) it can easily be seen that there is the following recurrence relation between the terms
of the series:
2df,/dT = e, (16)
where
oy == kFf, - frr1 —[1fs- amn

The equation for heat balance is now obtained. To this end, Eq. (6) is integrated with respect to x from
0 to ©», By introducing the dimensionless coordinate n, one obtains

g dor & A %o | (18)
dt Q dr M In=o
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Hence, by using (12)-(14) an expression for the quantity F is obtained:

n:o)' 19)

Thus, as a result of the transformations carried out the heat-conduction equation (1) has been reduced to
its dimensionless form (11), and the heat-balance equation (18) obtained from the latter has assumed the form
(12) with (19) taken into account,

Fe—2(ft 5
on

Following [2], the dimensionless multiparameter representation of the heat fluxes ¢/Q = ¢(, fi, f5,...)
is considered; the quantities fi can be represented as parameters of generalized similarity.

It will be shown that the dimensionless variable ¢ which is a function of an infinite number of independent
variables n, f;, f5,..., is universal in the sense that it remains the same whatever the distribution (with re-
spect to time) of the density of the external heat flux QM.

It will be assumed in our further considerations that the function ¢(n, f;, f,,...) of an infinite number of
arguments exists and is continuous, its derivatives with respect to all variables also being continuous.

We proceed in Eq, (11) to other independent variables f;, f,,... by means of the formula

za“' ®, 9
ar”z“afk’

h=1

which can be obtained from (16). Thus, one obtains the sought universal equation

) -
o 1 .p _aqz__fiq,zzmk % @0
on =1 . o,

on? 2
which should be analyzed with the boundary conditions
' 9=1for =0; ¢=0 as n—=>o00;9 =0, (M) for fy=[,=...=0, 21
obtained from (7) and (8) by proceeding to other variables, which are also universal in the same sense.

The last of the conditions (21) is found by using Eq. (20) itself. By settingf; =f, =... =0 in (20), one
obtains

ey 'd% 1 dep, - 0.
dn? dn dn  |n=0
Hence, by using the first two conditions of (21), one finds
2 i
®o=1— = S. exp (— ) du = erfe (22)

where u = 1/vx.

The obtained result is identical to the solution of the linear heat-conduction problem with the boundary
conditions of the second kind (@ = const, gy = 0} [3]. This can easily be established by integrating (12) with the
initial conditions zy = 0 for T = 0, which leads to z = 471/m; the latter gives, with the aid of (10) and (13), an ex-
plicit form for the variable u:

u=x/2V at .

The nonlinear problem (20), (21) can only be solved if there is a finite number of variables fj, f,... .
A single-parameter approximation is now considered; this corresponds to the assumption f; =0, f, = fs=... =
0. In this case the problem (20), (21) becomes

Fp 1 o . 9
Y L gF Y o=, ——
o +g o fio= oy AL 23)
where, in agreement with (17), one has w; = Fff‘f%;
(24)

¢=1 for =0, =0 as M—oo; g=-erfc(n/} n) for [, =0.
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TABLE 1, Values of the Functions F{() () and o) (g, f,)

@ (0. 1)

B P 5 ol 0 | o2 | o4 | 06 | o8 1,0 1,2 e | e | s | 20
1,2732 0 1,0000 0,8127 0,6505 0,5125 | 0,3971 | 0,3024 | 0,2253 | 0,1663 | 0,1199 | 0,0848 | 0,0588
1,5528 —0,2 1,0000 0,8117 0,6474 0,5070 | 0,3808 | 0,2940 | 0,2176 | 0,1581 | 0 1197 | 0,0790 | 0,0545
1,8324 —0,4 1,0000 0,8107 0,6443 0,5017 | 0,3827 | 0,2850 | 0,2093 | 0,1502 | 0,1057 | 0,0732 | 0,0501
2,1156 —0,6 1,0000 0,8098 0,6414 0,4968 | 0,3762 | 0,2785 | 0,2017 | 0,1430 | 0,0994 | 0,060 | 0,0460
2,4022 —0,8 1,0000 0,£089 0,63£6 0,4920 | 0,3700 | 0,2716 | 0,1947 | 0,1365 | 0,0938 | 0,0635 | 0,0425
2,6918 —1,0 1,0000 0,8080 0,6359 0,4875 | 0,3641 | .0,2651 | 0,1882 | 0,1306 | 0,0888 | 0,0595 | 0,0396
2,9340 —1,2 1,0000 0,8072 0,6333 0,4832 | 0,3586 | 0,250 | 0,1823 | 0,1252 | 0,0843 | 0,0559 | 0,0370
3,2737 —1,4 1,0000 0,8063 0,6308 0,4791 | 0,3534 | 0,2533 | 0,1767 | 0,1200 | 0,0802 | 0,0528 | 0,0347
3,5754 —1.6 1,0000 0,8055 0,6284 0,4751 | 0,3484 | 0,2479 | 0,1716 | 0,1158 | 0,0765 | 0,0500 | 0,0327
3,8741 —1,8 1,0000 0,8047 0,6261 0,4713 | 0,2436 | 0,2423 | 0,1667 | 0,1115 | 0,0731 | 0,0475 | 0,0310
4,1745 —2,0 1,0000 0,8040 0,6238 0,4676 | 0,3390 | 0,2320 | 0,1622 | 0,1076 | ©,0700 | 0,0452 | 0,0294
4,4766 —2,2 1,0000 0,8032 0,6216 0,4640 | 0,3346 | 0,2334 | 0,1578 | 0,1040 | 0,0672 | 0,0431 | 0,0230

This approximation becomes exact if the density distribution of the external heat flux Q(7) is linear in 7,

Equation (23) with the boundary conditions (24) was solved numerically by using the scheme of the sweep
method [4]. The integration was carried out with the step An = —Afy = 0,1 until 9 = 7 and f; = —2.3. By virtue
of the universality of (23) it can once and for ever be integrated and its result tabulated. Having found the solu~
tions qo(i) (n, i), one can also find and tabulate the quantities

(1)

0
FO () = — 2 (fi > n=0), (25)
n

© (n, f)=1— [ ¢ (n, fodn. 26

[

The obtained results are given in Table 1, [From now on the superscript (1) is omitted.]

The function ®(;, f;) represents the dimensionless temperature profile in the body. The transition to
dimensional quantities uses the formula

11+ W o, . @7)

which follows from the relation (4), the latter having been integrated with respect to x from x to © and having
proceeded to the new variables. This implies, in particular, that

az 28

To— Tu + Q_VA_M., (28)
dTp Q a F

w ~a V7 (f‘+ 2 ) (29)

To find the final form of the solution for the problem (1)-(3) with a given specific function Q(Tp, Ts, T)
it is necessary to find, first of all, the dependence of the parameter f; and the quantity z on time. This can
be achieved by solving Eq. (12), which in a single-parameter approximation becomes

dz/dt = F (f,). (30)
The relation between f; and z is determined by the formula (14), in which by virtue of (2) one has

R _ R pw, T, ddTTS.

daT
R, T )

T

31
dv ot 61
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Fig. 1. The function ®[(Kiy)/Foyl
for radiative heat transfer for Ty =

0 (m = 4),
In the above
oQ aQ
P(Th, ;. )= —— R(Tp, Ty, 1) =
pr s Ty’ (T, Ts, ) T (32)
Substituting (31) together with (29) into (14), one obtains the equation
4, , @ p(f4 L]
—Q—(R p + = )+ i P(frr 2 = [ (33)

which jointly with (28) enables one to find the function f;(z) for any fime instant provided the function Tg(T) is
known, ‘

It follows from Table 1 that the curve F{{;) can be approximated on the interval —2.3 = f; = 0 by the
straight line

F=c—uf,. (24)
By using the method of least squares, one finds the values ¢ = 1,247 and b = 1,460,
The latter enables one to find f; in (33) in an explicit form:

=g (R 2) 4 2 va |1 -5 v | (39

Q dx at A

By now eliminating f; from (30), with the aid of (34) and (35) one obtains an equation for z:
dz z dT; aQ cP 1—056
— =c—b | okl S B 2 = . —_ 36
dv [Q(Rdr +ar>+2xV‘”']/[l— n PV‘”]- , o

The obtained equation has to be solved jointly with (28), since @, P, and R depend on the quantity Tp,
which is pot known in advance. In the general case, Tp in (28) cannot be given in terms of z explicitly; it is,
therefore, advisable to go over to the variable Tp in (36). The expression

2 =22(Tp — T.)aQ? (37)

obtaintable from (28) is now differentiated with respect to time; this yields

— 2 —
¢z _ 9 dp 0z dTp 3 _ 2(Tp—T) ¥ UI_P () T,,)drp

dt | oTp dv | 9T, dv = ar aQ Q d

— R

Tp—Te pdfy  To—To R (38)
Q dt Q ot

By inserting (37) and (38) into (36), an equation is obtained with the single unknown Tp:

M2 (Tp — T) (1_}) T —T- ) dTp  _ (39)
aQ? Q dt
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TABLE 2. Comparison of the Results in Evaluating ® for Heat Trans-
fer by Newton's Law (m = 1) According to [2] (upper figure) and Ac-
cording to the Parametric Method (lower figure)

1 Bl VFo,
2 VFo, 0,01 | 0.1 | 1 [ 1w | se
o 0,0113 0,1035 0,5725 0,9439 0,9887
0,0111 0,1023 0,5780 0,9508 0,9905
0.2 0,0077 0,0715 0,4136 0,7244 0,7665
’ 0,0076 0,0711 0,4232 0,75%6 0,8045
0.4 0,0050 0,0469 0,2830 0,5256 0,5621
! 0,0050 0,0166 04,2035 . 0,5834 0,6320
0.8 0.,0018 0,0172 0,1111 0,2305 0,2520
’ 0,0018 0,0169 0,1232 0,3102 0,3543
1.2 0,0006 0,050 0,0328 0,0778 0,0871
’ 0,0003 0,0050 0,0433 0,1446 0,1763
_ - b P(Tp—T) . 22 (Tp—T.)
2 Q—(1—050) P(Tp —T=) aQ?
% R_dT_s n Q) Qul—-bhH—-( — 050 P (Tp —Tx) (39)
dv ot Q—(1—050)P (Tp —Tw)

As a result of these transformations, the solution of the problem (1)-(3), irrespective of the function
Q= Q(Tp, Tg, T), reduces fo integrating the differential equation (39) of the first order together with the ini-
tial condition Tp = Tpy = T(0, 0) and with the subsequent evaluation of the value of z and f; by using the for-
mulas (37) and (35), respectively.

In the case of Tg = const and Q not depending on time explicitly, the variables in Eq. (39) can be separated
and the solution can be written as

Tp
at
2 =SA(Tp)dTp, @0
TPO
where
_ TP_T“’ _ TP—T“’ / . _b_ P(TP—"TN) ] (41)
A(T")—[Q @ (1 = )]/C b Y T (—osn P (—Ta) [

To be able to determine the error of the proposed approach and to describe the procedure for evaluating
the ftemperature field, we analyze in detail the solution of the problem (1)-(3) in the case in which the function
Q in the boundary conditions (2) is given by

Q(Tp) = o (Ta' — Tg‘), o, = const, Ty = const.
The expression (41) is then given by
A (TP) _ 2 (Tp— To) [TS — TP + (1—0.5b) rnTp_ (Tp—T- )] (42)

copy (Ts —Tp)?

In the particular case of m =1 (Newton's law of heat transfer — a linear problem) or m = 4 one has Tg =
0 (radiative transfer heat by in vacuum) with the initial condition m = 4, Ty(x) =T, one obtains from (40) and (42)

8

oc;ar _ 2 [ ep(1—0.500p Op § _ 43)
_(’S (1—9)3 dOp for m

9
oc4T et 2 [ opll +0pE—20) i
0
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TABLE 3. Comparison of the Results in Evaluating @, for Radia-
tive Heat Transfer (m = 4) for Tg = 0 According to [5] (upper fig-
ure) and According to the Parametric Method (lower figure)

(Kiy), VFo,
0,01 | 0,1 | 1 | 1o | 100

0 0,01 0,09 0,31 0,57 0,76
0,0849 0,3184 0,5746 0,7502

1/2 VFo,

In the above ®p = (Tp—Tw)/(Ts— To) is the dimensionless temperature of the surface,

It can easily be observed that the solutions (43) and (44) admit the traditional criteria formulation,
namely,

BifFo, = ©, (&), (Ki,)i Fo, = Q,(6p),

where 24 (®p) and 2, (®p) are the right-hand sides of the relations (43) and (44) and can be tabulated, A com-
putation formula for the sought temperature field can be obtained from (27) having substituted 37y in it:

© = D6y,
where @ = (T —T,)/(Ts—T,) is the dimensionless temperature.

The function 2 {3, f;) is found by using Table 1; to apply it, one evaluates in advance the quantity f; by
using the formula
C@P
bBp—2
fi= 2c0p
Bp(26 — 3)—1

fo m=1,
for m=4,

which follow from (35) and the quantity
Bi,
Bige

T ] _(Kige
(Kier)o

for m=1,

for m:4’

where

Bia* _ — __._.Qj_i.__.__ ; (Kiﬁ‘)o —_ e fi l(3_2b)f1 + 20]3 (45)

C—bfi+e 6[2—b) i+l

The expressions (45) were obtained from (37).

Similarly as in {3], the calculation results were processed in the coordinates ® = ®1(Bix\fF_o—x) and ©, =
8,[ (Kix)¢/Fox] for 1/2/Fox = const and they are shown in Tables 2 and 3 and in Fig, 1. The exact solution of
the linear problem given in [3] enables one to estimate the error of the parametric method. It follows from
Table 2 that this method produces almost exact results for the surface temperature. If one allows an error of
+1% from the maximal temperature, then one can see that this requirement is satisfied in a sufficiently large
variation domain of the generalized argument 0 < Biy < VFogz < 1. In the remaining range of the variation of
arguments the error never exceeds 10%, Bearing in mind that in practice one comparatively rarely comes
across the values 10 =< Bix/Fox = 50, the accuracy of the method should be considered as good.

For the case of m = 4 no exact solutions were found as stated in [1]. In [5], the curve of the temperature
of the body surface versus time obtained by numerical integration of the heat-conduction equation is shown. In
Table 3 the values of the surface temperature obtained with the aid of the parametric method were compared
with the values obtained from a graph shown in [5]. It follows from Table 3 that the accuracy of the proposed
method is high. For practical calculations the graphs of the relations ®, = ®,[(Kix) ¢/Fox] for 1/2/Fox = const,
which enable one to calculate the temperature field of a semiinfinite body, are shown.

The problems solved above seem to be the simplest in their own class. More complex problems,
which are important in practice [such as heat transfer by free convection (m = 5/4), radiative heat transfer
with Tg = 0, radiative —convective heat transfer, etc.], can also be solved in a similar manner,
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In conclusion, one should observe that this method can, in principle, be extended to bodies of finite di-

mensions, and (whichis especially important) its use enables one to solve conjugate heat-transfer problems

relatively easily,

NOTATION
T is the temperature, °K;
® is the dimensionless temperature;
q is the heat-flux density, W/m?;
Q is the heat-flux density on body surface, W/m?;
] is the dimensionless density of heat flux;
X is the coordinate, m;
n is the dimensionless coordinate;
o* is the thickness of filling, m;
T is the time, sec;
§N is the dimensionless similarity parameter;
a is the coefficient of thermal diffusivity of body; m%/sec;
A is the coefficient of thermal conductivity of body; W/m . °K;
Om is the proportionality coefficient with dimension dependent on m;
m is the coefficient describing the heat-transfer law;
Bix = oyn/A is the Biot number;
Kix)g = Qox/
A(Ts—Tpe) is the Kirpichev criterion;
Foyx = at1/x? is the Fourier number,
Indices
0 is the initial value;
p is the body surface;
o0 is the point at infinity;
s is the surrounding medium.
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